Codeforces Round 698 A 题解

Nezzar and Colorful Balls

Nezzar has $n$ balls, numbered with integers $1,2,…,n$. Numbers $a_1,a_2,…,a_n$ are written on them, respectively. Numbers on those balls form a non-decreasing sequence, which means that $a_i≤a_{i+1}$ for all $1≤i<n$.

Nezzar wants to color the balls using the minimum number of colors, such that the following holds.

  • For any color, numbers on balls will form a strictly increasing sequence if he keeps balls with this chosen color and discards all other balls.

Note that a sequence with the length at most $1$ is considered as a strictly increasing sequence.

Please help Nezzar determine the minimum number of colors.

Input

The first line contains a single integer $t$ ($1≤t≤100$) — the number of testcases.

The first line of each test case contains a single integer $n$ ($1≤n≤100$).

The second line of each test case contains $n$ integers $a_1,a_2,…,a_n$ ($1≤a_i≤n$). It is guaranteed that $a_1≤a_2≤…≤a_n$.

Output

For each test case, output the minimum number of colors Nezzar can use.

Example

input

1
2
3
4
5
6
7
8
9
10
11
5
6
1 1 1 2 3 4
5
1 1 2 2 3
4
2 2 2 2
3
1 2 3
1
1

output

1
2
3
4
5
3
2
4
1
1

Note

Let's match each color with some numbers. Then:

In the first test case, one optimal color assignment is $[1,2,3,3,2,1]$.

In the second test case, one optimal color assignment is $[1,2,1,2,1]$.

题目大意

有 $n$ 个球,它们的编号形成了一个不递减序列 ${a_n}$ 。现在要为它们上色,要求编号相同的球不能有相同的颜色。对于每种方案,求最少需要多少种颜色。

分析

这是典型的贪心算法,使用最少的颜色,一种很方便的想法是使编号相同的球满足 $color[j] = color[j-1] + 1;$ ,只要遇到编号不同的球就初始化 $color[j] = 1;$ 。

AC代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include <stdio.h>
int main() {
int t, a[105], color[105];
scanf("%d", &t);
for(int i=0; i<t; ++i) {
int n, ans = 1;
scanf("%d", &n);
for(int j=0; j<n; ++j) {
scanf("%d", &a[j]);
}
color[0] = 1;
for(int j=1; j<n; ++j) {
if(a[j] == a[j-1]) {
color[j] = color[j-1] + 1;
} else {
color[j] = 1;
}
if(color[j] > ans) ans = color[j];
}
printf("%d\n", ans);
}
return 0;
}

Codeforces Round 698 A 题解

https://mmdjiji.com/2021/01/2901/

作者

吉吉

发布于

2021-01-29

更新于

2024-12-21

许可协议