Codeforces Round 697 A 题解

Odd Divisor

You are given an integer $n$. Check if $n$ has an odd divisor, greater than one (does there exist such a number $x$ ($x>1$) that $n$ is divisible by $x$ and $x$ is odd).

For example, if $n=6$, then there is $x=3$. If $n=4$, then such a number does not exist.

Input

The first line contains one integer $t$ ($1≤t≤10^4$) — the number of test cases. Then $t$ test cases follow.

Each test case contains one integer $n$ ($2≤n≤10^{14}$).

Please note, that the input for some test cases won’t fit into $32$-bit integer type, so you should use at least $64$-bit integer type in your programming language.

Output

For each test case, output on a separate line:

  • YES if $n$ has an odd divisor, greater than one;
  • NO otherwise.

You can output YES and NO in any case (for example, the strings yEs, yes, Yes and YES will be recognized as positive).

Example

input

1
2
3
4
5
6
7
6
2
3
4
5
998244353
1099511627776

output

1
2
3
4
5
6
NO
YES
NO
YES
YES
NO

题目大意

对于给定的数 $n$ ,判断该数是否存在包含大于 $1$ 的奇因子,有则输出 YES ,无则输出 NO

分析

根据题目要求最大的 $n$ 最大可能到 $10^{14}$ ,因此需要使用 long long 来存储。那么思路就是每次去判断它是否为奇数,如果是就直接输出 YES ,如果不是就除以 $2$ 然后再判断直到除到 $1$ 就输出 NO

AC代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include <stdio.h>
typedef long long ll;
int main() {
ll t, n;
scanf("%lld", &t);
for(int i=0; i<t; ++i) {
scanf("%lld", &n);
bool flag = false;
while(n > 1) {
if(n % 2 != 0) {
printf("YES\n");
flag = true;
break;
}
n /= 2;
}
if(!flag) printf("NO\n");
}
return 0;
}

Codeforces Round 697 A 题解

https://mmdjiji.com/2021/01/2601/

作者

吉吉

发布于

2021-01-26

更新于

2024-11-21

许可协议